Probability and Statistics (BTech CSE)

Anmol Nawani

May 14, 2023

Contents

[14 Standard Normal Distribution](#page-19-2) 18

1 Ungrouped Data

Ungrouped data is data that has not been arranged in any way.So it is just a list of observations

$$
x_1, x_2, x_3, \ldots x_n
$$

1.1 Mean

$$
\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}
$$

$$
\bar{x} = \frac{\sum_{i=1}^n x_i}{n}
$$

1.2 Mode

The observation which occurs the highest number of time. So the x_i which has the highest count in the observation list.

1.3 Median

The median is the middle most observations. After ordering the n observations in observation list in either Ascending or Descending order (any order works). The median will be :

• n is even

$$
Median = \frac{x_{\frac{n}{2}} + x_{(\frac{n}{2}+1)}}{2}
$$

• n is odd

$$
Median = x_{\frac{n+1}{2}}
$$

1.4 Variance and Standard Deviation

$$
Variance = \sigma^2
$$

Standard deviation = σ

$$
\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - Mean)^2}{n}
$$

$$
\sigma^2 = \frac{\sum_{i=1}^n x_i^2}{n} - (Mean)^2
$$

1.5 Moments

1.5.1 About some constant A

$$
r^{th} moment = \frac{1}{n} \Sigma (x_i - A)^r
$$

1.5.2 About Mean (Central Moment)

When $A = Mean$, then the moment is called central moment.

$$
\mu_r = \frac{1}{n} \Sigma (x_i - Mean)^r
$$

1.5.3 About Zero (Raw Moment)

When $A = 0$, then the moment is called raw moment.

$$
\mu_{r}^{'} = \frac{1}{n} \Sigma x_{i}^{r}
$$

2 Grouped Data

Data which is grouped based on the frequency at which it occurs. So if 9 appears 5 times in our observations, we group as $x(observation) = 9$ and f $(frequency) = 5.$

If we store it in data way, i.e. the observations are of form 10-20, 20-30, 30-40 ... then we will get x_i by doing

$$
x_i = \frac{lower\ limit + upper\ limit}{2}
$$

i.e,

 x_i for 20-30 will be $\frac{20+30}{2}$ So for data

the x_i 's will become.

2.1 Mean

$$
\bar{x} = \frac{\sum f_i x_i}{\sum f_i}
$$

2.2 Mode

The **modal class** is the record with the row with the highest fⁱ

$$
Mode = l + (\frac{f_1 - f_0}{2f_1 - f_0 - f_2}) \times h
$$

In the formula :

 $l \rightarrow$ lower limit of modal class

 $f_1 \rightarrow frequency(f_i)$ of the modal class

 $f_0 \rightarrow$ frequency of the row preceding modal class

 $f_2 \rightarrow f$ frequency of the row after the modal class

 $h \rightarrow$ size of class interval (upper limit - lower limit)

2.3 Median

The median for grouped data is calculated with the help of **cumulative frequency**. The cumulative frequency (cf_i) is given by:

$$
cf_i = f_1 + f_2 + f_3 + \dots + f_i
$$

The **median class** is the class whose cf_i is just greater than or is equal to $\frac{\Sigma f}{2}$

$$
Median = l + (\frac{(n/2) - cf}{f}) \times h
$$

In the formula :

l \rightarrow lower limit of the median class

 $h \rightarrow$ size of class interval (upper limit - lower limit)

 $n \to$ number of observations

 $cf \rightarrow$ cumulative frequency of the median class

 $f \rightarrow f$ frequency of the median class

2.4 Variance and Standard Deviation

 $Variance = \sigma^2$

Standard deviation = σ

$$
\sigma^2 = \frac{\sum_{i=1}^n f_i (x_i - Mean)^2}{\sum f_i}
$$

$$
\sigma^2 = \frac{\sum_{i=1}^n f_i x_i^2}{\sum f_i} - (Mean)^2
$$

2.5 Moments

2.5.1 About some constant A

$$
r^{th} \ moment = \frac{1}{\sum f_i} [\sum f_i (x_i - A)^r]
$$

2.5.2 About Mean (Central Moment)

When $A = Mean$, then the moment is called central moment.

$$
\mu_r = \frac{1}{\Sigma f_i} [\Sigma f_i (x_i - Mean)^r]
$$

2.5.3 About Zero (Raw Moment)

When $A = 0$, then the moment is called raw moment.

$$
\mu_r^{'} = \frac{1}{\Sigma f_i} [\Sigma f_i x_i^r]
$$

3 Relation between Mean, Median and Mode

 $3Median = 2Mean + Mode$

4 Relation between raw and central moments

$$
\mu_0 = \mu'_0 = 1
$$

\n
$$
\mu_1 = 0
$$

\n
$$
\mu_2 = \mu'_2 - \mu'_1
$$

\n
$$
\mu_3 = \mu'_3 - 3\mu'_1\mu'_2 + 2\mu'_1
$$

\n
$$
\mu_4 = \mu'_4 - 4\mu'_3\mu'_1 + 6\mu'_2\mu'_1 - 3\mu'_1
$$

5 Skewness and Kurtosis

5.1 Skewness

- If Mean > Mode, then skewness is positive
- If Mean $=$ Mode, then skewness is zero (graph is symmetric)
- If Mean < Mode, then skewness is zero

5.1.1 Pearson's coefficient of skewness

The pearson's coefficient of skewness is denoted by S_{KP}

$$
S_{KP} = \frac{Mean - Mode}{Standard\ Deviation}
$$

- If S_{KP} is zero then distribution is symmetrical
- If S_{KP} is positive then distribution is positively skewed
- If S_{KP} is negative then distribution is negatively skewed

5.1.2 Moment based coefficient of skewness

The moment based coefficient of skewness is denoted by β_1 . The μ here is central moment.

$$
\beta_1 = \frac{\mu_3^2}{\mu_2^3}
$$

The drawback of using β_1 as a coefficient of skewness is that it **can only tell if distribution is symmetrical or not** ,when $\beta_1 = 0$. It can't tell us the direction of skewness, i.e positive or negative.

• If β_1 is zero, then distribution is symmetrical

5.1.3 Karl Pearson's γ_1

To remove the drawback of the β_1 , we can derive Karl Pearson's γ_1

$$
\gamma_1 = \sqrt{\beta_1}
$$

$$
\gamma_1 = \frac{\mu_3}{\mu_2^{3/2}}
$$

- If μ_3 is positive, the distribution has positive skewness
- If μ_3 is negative, the distribution has negative skewness
- If μ_3 is zero, the distribution is symmetrical

5.2 Kurtosis

Kurtosis is the measure of the peak and the curve and the "fatness" of the curve.

The kurtosis is calculated using β_2

$$
\beta_2=\frac{\mu_4}{\mu_2^2}
$$

The value of β_2 tell's us about the type of curve

- Leptokurtic (High Peak) when $\beta_2>3$
- Mesokurtic (Normal Peak) when $\beta_2=3$
- Platykurtic (Low Peak) when $\beta_2<3$

5.2.1 Karl Pearson's γ**²**

 γ_2 is defined as:

$$
\gamma_2=\beta_2-3
$$

- Leptokurtic when $\gamma_2>0$
- Mesokurtic when $\gamma_2=0$
- Platykurtic when $\gamma_2 < 0$

6 Basic Probability

6.1 Conditional Probability

If some event B has already occured, then the probability of the event A is:

$$
P(A \mid B) = \frac{P(A \cap B)}{P(B)}
$$

 $P(A | B)$ is read as A given B. So we are given that B has occured and this is probability of now A occuring.

6.2 Law of Total Probability

The law of total probability is used to find probability of some event A that has been partitioned into several different places/parts.

$$
P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3) + ... + P(A|B_i)P(B_i)
$$

$$
P(A) = \Sigma P(A|B_i)P(B_i)
$$

Example, Suppose we have 2 bags with marbles

- Bag $1: 7$ red marbles and 3 green marbles
- Bag 2 : 2 red marbles and 8 green marbles

Now we select one bag at random (i.e, the probability of choosing any of the two bags is equal so 0.5). If we draw a marble, what is the probability that it is a green marble?

Sol. The green marbles are in parts in bag 1 and bag 2. Let G be the event of green marble. Let B_1 be the event of choosing the bag 1

Let B-2 be the event of choosing the bag 2

Then, $P(G|B_1) = \frac{3}{7+3}$ and $P(G|B_2) = \frac{8}{2+8}$
Now, we can use the law of total probability to get

 $P(G) = P(G|B_1)P(B_1) + P(G|B_2)P(B_2)$

Example 2, Suppose a there are 3 forests in a park.

• Forest A occupies 50% of land and 20% plants in it are poisonous

- Forest B occupies 30% of land and 40% plants in it are poisonous
- Forest C occupies 20% of land and 70% plants in it are poisonous

What is the probability of a random plant from the park being poisonous.

Sol. Since probability is equal across whole area of the park. Event A is plant being from Forest A, Event B is plant being from Forest B and Event C is plant being from Forest C. If event P is plant being poisonous, then using law of total probability,

$$
P(P) = P(P|A)P(A) + P(P|B)P(B) + P(P|C)P(C)
$$

And we know $P(A) = 0.5$, $P(B) = 0.3$ and $P(C) = 0.2$. Also $P(P|A) =$ 0.20, $P(P|B) = 0.40$ and $P(P|C) = 0.70$

6.3 Some basic identities

• Probabilities follow law of inclusion and exclusion

$$
P(A \cup B) = P(A) + P(B) - P(A \cap B)
$$

• DeMorgan's Theorem

$$
P(\overline{A \cap B}) = P(\overline{A} \cup \overline{B})
$$

$$
P(\overline{A \cup B}) = P(\overline{A} \cap \overline{B})
$$

• Some other Identity

$$
P(\overline{A} \cap B) + P(A \cap B) = P(B)
$$

$$
P(A \cap \overline{B}) + P(A \cap B) = P(A)
$$

7 Probability Function

It is a mathematical function that gives probability of occurance of different possible outcomes. We use variables to represent these possible outcomes called **random variables**. These are represented by capital letters. Example, X , Y , etc. We use these random variables as:

Suppose X is flipping two coins.

$$
X = \{HH, HT, TT, TH\}
$$

We can represent it as,

$$
X = \{0, 1, 2, 3\}
$$

Now we can write a probability function $P(X = x)$ for flipping two coins as :

Another example is throwing two dice and our random variable X is sum of those two dice.

7.1 Types of probability functions (Continious and Discrete random variables)

Based on the range of the Random variables, probability function has two different names.

- For discrete random variables it is called Probability Distribution function.
- For continious random variables it is called Probability Density function.

8 Proability Mass Function

If we can get a function such that,

$$
f(x) = P(X = x)
$$

then $f(x)$ is called a **Probability Mass Function** (PMF).

8.1 Properties of Probability Mass Function

Suppose a PMF

$$
f(x) = P(X = x)
$$

Then,

8.1.1 For discrete variables

$$
\Sigma f(x) = 1
$$

$$
E(X^n) = \Sigma x^n f(x)
$$

For $E(X)$, the summation is over all possible values of x.

$$
Mean = E(X) = \Sigma x f(x)
$$

$$
Variance = E(X2) - (E(X))^{2} = \Sigma x^{2} f(x) - (\Sigma x f(x))^{2}
$$

To get probabilities

$$
P(a \le X \le b) = \sum_{a}^{b} f(x)
$$

$$
P(a < X \le b) = \left(\sum_{a}^{b} f(x)\right) - f(a)
$$

$$
P(a \le X < b) = \left(\sum_{a}^{b} f(x)\right) - f(b)
$$

Basically, we just add all $f(x)$ values from range of samples we need.

8.1.2 For continious variables

$$
\int_{-\infty}^{\infty} f(x)dx = 1
$$

$$
E(X^n) = \int_{-\infty}^{\infty} x^n f(x)dx
$$

We only consider integral from the possible values of x. Else we assume 0.

$$
Mean = E(X) = \int_{-\infty}^{\infty} x f(x) dx
$$

$$
Variance = E(X^2) - (E(X))^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - (\int_{-\infty}^{\infty} x f(x) dx)^2
$$

To get probability from a to b (inclusive and exclusive doesn't matter in continious).

$$
P(a < X < b) = \int_{a}^{b} f(x) \, dx
$$

8.2 Some properties of mean and variance

• Mean

$$
E(aX) = aE(X)
$$

$$
E(a) = a
$$

$$
E(X + Y) = E(X) + E(Y)
$$

• Variance

If

$$
V(X) = E(X^2) - (E(X))^2
$$

Then

$$
V(aX) = a2V(X)
$$

$$
V(a) = 0
$$

9 Moment Generating Function

The moment generating function is given by

$$
M(t) = E(e^{tX})
$$

9.1 For discrete

$$
M(t) = \sum_{0}^{\infty} e^{tx} f(x)
$$

9.2 For continious

$$
M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx
$$

9.3 Calculations of Moments (E(X)) using MGF

$$
E(X^n) = \left(\frac{d^n}{dt^n}M(t)\right)_{t=0}
$$

10 Binomial Distribution

The use of a binomial distribution is to calculate a known probability repeated n number of times, i.e, doing **n** number of trials. A binomial distribution deals with discrete random variables.

$$
X = \{0, 1, 2, \dots n\}
$$

where **n** is the number of trials.

$$
P(X = x) = {}^{n}C_x (p)^{x} (q)^{n-x}
$$

Here

$$
n \rightarrow number of trials
$$

$$
x \rightarrow number of successes
$$

$$
p \rightarrow probability of success
$$

$$
q \rightarrow probability of failure
$$

$$
p = 1 - q
$$

• Mean

$$
Mean = np
$$

• Variance

 $Variance = npq$

• Moment Generating Function

$$
M(t) = (q + pe^t)^n
$$

10.1 Additive Property of Binomial Distribution

For an independent variable X . The binomial distribution is represented as

 $X B(n,p)$

Here,

 $n \rightarrow number \ of \ trials$ $p \rightarrow probability \ of \ success$

• Property

If given,

$$
X_1 \sim B(n_1, p)
$$

$$
X_2 \sim B(n_2, p)
$$

Then,

 $X_1 + X_2 \sim B(n_1 + n_2, p)$

• **NOTE**

If

 $X_1 \sim B(n_1, p_1)$ $X_2 \sim B(n_2, p_2)$

Then $X_1 + X_2$ is not a binomial distribution.

10.2 Using a binomial distribution

We can use binomial distribution to easily calculate probability of multiple trials, if probability of one trial is known. Example, the probability of a duplet (both dice have same number) when two dice are thrown is $\frac{6}{36}$. Suppose now we want to know the probability of a 3 duplets if a pair of dice is thrown 5 times. So in this case :

number of trials (n) = 5
number of duplicates we want probability for (x) = 3
probability of duplicate (p) =
$$
\frac{6}{36}
$$

 $q = 1 - p = 1 - \frac{6}{36}$

So using binomial distribution,

$$
P(probability\ of\ 3\ duplets) = P(X = 3) = {}^{5}C_{3} \left(\frac{6}{36}\right)^{3} \left(\frac{30}{36}\right)^{5-3}
$$

11 Poisson Distribution

A case of the binomial distribution where **n** is indefinitely large and **p** is very small and $\lambda = np$ is finite.

$$
P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!} \text{ if } x = 0, 1, 2....
$$

$$
P(X = x) = 0 \text{ otherwise}
$$

$$
\lambda = np
$$

• Mean

$$
Mean = \lambda
$$

• Variance

 $Variance = \lambda$

• Moment Generating Funtion

$$
M(t) = e^{\lambda(e^t - 1)}
$$

11.1 Additive property

If X_1 , X_2 , $X_{3..Xn}$ follow poisson distribution with λ_1 , λ_2 , $\lambda_{3...,\lambda n}$ Then,

$$
X_1 + X_2 + X_3 \dots + X_n \sim \lambda_1 + \lambda_2 + \lambda_3 + \dots + \lambda_n
$$

12 Exponential Distribution

A continuous random distribution which has probability mass function

$$
f(x) = \lambda e^{-\lambda x}, when x \ge 0
$$

$$
f(x) = 0, otherwise
$$

where
$$
\lambda > 0
$$

• Mean

$$
Mean = \frac{1}{\lambda}
$$

• Variance

$$
Variance = \frac{1}{\lambda^2}
$$

• Moment Generating Function

$$
M(t) = \frac{\lambda}{\lambda - t}
$$

12.1 Memory Less Property

$$
P[X > (s+t) | X > t] = P(X > s)
$$

13 Normal Distribution

Suppose for a probability funtion with random variable X, having mean μ and variance σ^2 . We denote normal distribution using $X \sim N(\mu, \sigma)$ The probability mass funtion is

$$
f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)
$$

$$
-\infty < x < \infty
$$

$$
-\infty < \mu < \infty
$$

$$
\sigma > 0
$$

Here, $exp(x) = e^x$

• Moment Generating Funtion

$$
M(t) = exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)
$$

13.1 Odd Moments

$$
E(X^{2n+1}) = 0, \quad n = 0, 1, 2, \dots
$$

13.2 Even Moments

$$
E(X^{2n}) = 1.3.5....(2n-3)(2n-1)\sigma^{2n}, \quad n = 0, 1, 2, ...
$$

13.3 Properties

• In a normal distribution

$$
Mean = Mode = Median
$$

• For normal distribution, mean deviation about mean is

$$
\sigma \sqrt{\frac{2}{\pi}}
$$

13.4 Additive property

Suppose for distributions $X_1, X_2, X_3 \ldots X_n$ with means $\mu_1, \mu_2, \mu_3 \ldots \mu_n$ and standard deviation σ_1^2 , σ_2^2 , σ_3^2 ,.... σ_n^2 respectively.

Then $X_1 + X_2 + X_3$ will have mean $(\mu_1 + \mu_2 + \mu_3 + \ldots + \mu_n)$ and standard deviation $({\sigma_1}^2 + {\sigma_2}^2 + {\sigma_3}^2 + \ldots + {\sigma_n}^2)$

• Additive Case

Given,

$$
X_1 \sim N(\mu_1, \sigma_1)
$$

$$
X_2 \sim N(\mu_2, \sigma_2)
$$

Then,

$$
aX_1 + bX_2 \sim N\left(a\mu_1 + b\mu_2, \sqrt{a^2\sigma_1^2 + b^2\sigma_2^2}\right)
$$

14 Standard Normal Distribution

The normal distribution with Mean 0 and Variance 1 is called the standard normal distribution.

$$
Z \sim N(0, 1)
$$

To calculate area under a given normal distribution, we can use the standard normal distribution. For that we need to calculate corresponding values in standard distribution from our given distribution. For that we have formula

$$
For X \sim N(\mu, \sigma)
$$

$$
z = \frac{x - \mu}{\sigma}
$$

 $x \rightarrow value$ in our normal distribution

 $\mu \rightarrow$ mean of our distribution

 $\sigma \rightarrow standard \; deviation \; of \; our \; distribution$

 $z \rightarrow corresponding$ value in standard normal distribution

Example,

Suppose for a normal distribution with $X \sim N(\mu, \sigma)$ and we want to calculate probability $P(a < X < b)$, then the ranges for same proability in the Z normal distribution will be,

$$
z_1 = \frac{a - \mu}{\sigma}
$$

$$
z_2 = \frac{b - \mu}{\sigma}
$$

Now the proability in Z distribution is,

$$
P(z_1 < Z < z_2)
$$
\n
$$
P\left(\frac{a-\mu}{\sigma} < Z < \frac{b-\mu}{\sigma}\right)
$$

So we need area under Z curve from a to b. Then, we use the standard normal table to get the area.

• **Note** : The standard normal distribution is symmetric about the y axis. This fact can be used when calculating area under Z curve.

15 Joint Probability Mass Function

The joint probability mass distribution of two random variables X and Y is given by

$$
f(x, y) = P(X = x, Y = y)
$$

• For discrete

$$
\Sigma_x \Sigma_y f(x, y) = 1
$$

• For continious

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1
$$

To get the probabilities,

$$
P(a \le X \le b, c \le Y \le d) = \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy
$$

15.1 Marginal probability distribution (from joint PMF)

• For discrete

$$
P(X = x) = f(x) = \sum_y f(x, y)
$$

$$
P(Y = y) = f(y) = \sum_x f(x, y)
$$

 $\bullet~$ For continious

$$
P(X = x) = f(x) = \int_{-\infty}^{\infty} f(x, y) dy
$$

$$
P(Y = y) = f(y) = \int_{-\infty}^{\infty} f(x, y) dx
$$

15.2 Conditional Probability for Joint PMF

$$
P(X = x | Y = y) = f(x | y) = \frac{P(X = x, Y = y)}{P(Y = y)}
$$

$$
P(X = x | Y = y) = f(x | y) = \frac{f(x, y)}{f(y)}
$$

15.3 Independant Random Variables

The random variables X and Y are independant if,

$$
f(x, y) = f(x)f(y)
$$

15.4 Moment of Joint Variables

$$
E(X,Y) = E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x,y) dx dy
$$

15.5 Covaraince

The covariance of two random variables X and Y is given by,

$$
cov(X, Y) = E(XY) - E(X)E(Y)
$$

15.5.1 Properties of covariance

• If X and Y are independant

$$
cov(X, Y) = 0
$$

• If variance of some random variable X is written var (X) , then

$$
cov(X + Y, X - Y) = var(X) - var(Y)
$$

• General of previous case

 $cov(aX + bY, cX + dY) = ac-var(X) + bd-var(Y) + (ad + bc) . cov(X, Y)$

15.5.2 Variance of two random variables

$$
var(aX + bY) = a^2 var(X) + b^2 var(Y) + 2abcov(X, Y)
$$

15.6 Correlation

The standard deviation of X is σ_X and standard deviation of Y is σ_Y . Then the correlation is given by,

$$
\gamma(X, Y) = \rho_{XY} = \frac{cov(X, Y)}{\sigma_X \sigma_Y}
$$

here, ρ_{XY} lies between -1 and 1

$$
-1 \leq \rho_{XY} \leq 1
$$

15.7 Conditional moments

$$
E(X \mid Y) = \int_{-\infty}^{\infty} x f(x \mid y) dx
$$
 will be a function of y

16 Useful equation

$$
n! = \int_0^\infty x^n e^{-x} dx
$$

17 Covariance in discrete data

Suppose for two sets of discrete data,

$$
X: x_1, x_2, x_3...x_n
$$

$$
Y: y_1, y_2, y_3...y_n
$$

$$
cov(X, Y) = \frac{1}{n} \left(\sum_{i=1}^n x_i y_i \right) - [mean(x).mean(y)]
$$

$$
n \rightarrow number \; of \; items
$$

18 Regression

Regression is a technique to relate a dependent variable to one or more independant variables.

18.1 Lines of regression

Both lines will pass through the point $(\text{mean}(x), \text{mean}(y))$

18.1.1 y on x

Equation of line,

$$
\frac{y - mean(y)}{x - mean(x)} = b_{yx}
$$

Where,

$$
b_{yx} = \frac{cov(X, Y)}{var(Y)}
$$

18.1.2 x on y

Equation of line,

$$
\frac{x - mean(x)}{y - mean(y)} = b_{xy}
$$

Where,

$$
b_{xy} = \frac{cov(X, Y)}{var(Y)}
$$

 \mathbf{b}_xy and \mathbf{b}_yx are called regression coefficients.

• **Note** : if one of the regression coefficients is greater than 1, then the other must be less than 1.

18.1.3 Correlation

$$
\gamma(X, Y) = \rho_{XY} = \pm \sqrt{b_{xy}b_{yx}}
$$

The sign of regression coefficients $(\mathbf{b}_\mathrm{xy}$ and $\mathbf{b}_\mathrm{yx})$ and the correlation coefficient is same.

18.2 Angle between lines of regression

$$
tan\theta = \left(\frac{1-\rho^2}{\rho}\frac{\sigma_X.\sigma_Y}{var(X) + var(Y)}\right)
$$

Here σ is standard deviation.

- If $\rho = 0$ then $\theta = \frac{\pi}{2}$ 2
- If $\rho=\pm 1$ then $\theta=0$