Probability and Statistics (BTech CSE)

Anmol Nawani

May 14, 2023

Contents

1	Ungrouped Data				
	1.1	Mean	3		
	1.2	Mode	3		
	1.3	Median	3		
	1.4	Variance and Standard Deviation	3		
	1.5	Moments	4		
		1.5.1 About some constant A \ldots	4		
		1.5.2 About Mean (Central Moment)	4		
		1.5.3 About Zero (Raw Moment)	4		
2	Grouped Data				
	2.1	Mean	5		
	2.2	Mode	5		
	2.3	Median	5		
	2.4	Variance and Standard Deviation	6		
	2.5	Moments	6		
		2.5.1 About some constant A \ldots	6		
		2.5.2 About Mean (Central Moment)	6		
		2.5.3 About Zero (Raw Moment)	6		
3	\mathbf{Rel}	ation between Mean, Median and Mode	7		
4	Rel	ation between raw and central moments	7		
5	Ske	wness and Kurtosis	7		
	5.1	Skewness	7		
		5.1.1 Pearson's coefficient of skewness	7		

		5.1.2 Moment based coefficient of skewness
		5.1.3 Karl Pearson's γ_1
	5.2	Kurtosis
		5.2.1 Karl Pearson's γ_2
6	Bas	ic Probability 10
	6.1	Conditional Probability
	6.2	Law of Total Probability
	6.3	Some basic identities
7	Pro	bability Function 12
	7.1	Types of probability functions (Continious and Discrete ran-
		dom variables) $\ldots \ldots 13$
8	Pro	ability Mass Function 13
	8.1	Properties of Probability Mass Function
		8.1.1 For discrete variables
		8.1.2 For continious variables $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 14$
9	Mo	ment Generating Function 14
	9.1	For discrete
	9.2	For continious
	9.3	Calculations of Moments $(E(X))$ using MGF
10) Bin	omial Distribution 15
		Additive Property of Binomial Distribution
	10.2	Using a binomial distribution
11	Poi	sson Distribution 17
	11.1	Additive property
12	e Exp	oonential Distribution 17
	12.1	Memory Less Property
13	Noi	rmal Distribution 18
	13.1	Odd Moments
	13.2	Even Moments $\ldots \ldots \ldots$
		Properties
	13.4	Additive property

1 Ungrouped Data

Ungrouped data is data that has not been arranged in any way. So it is just a list of observations

$$x_1, x_2, x_3, \dots x_n$$

1.1 Mean

$$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$
$$\bar{x} = \frac{\sum_{i=1}^n x_i}{n}$$

1.2 Mode

The observation which occurs the highest number of time. So the \mathbf{x}_i which has the highest count in the observation list.

1.3 Median

The median is the middle most observations. After ordering the n observations in observation list in either Ascending or Descending order (any order works). The median will be :

• n is even

$$Median = \frac{x_{\frac{n}{2}} + x_{(\frac{n}{2}+1)}}{2}$$

• n is odd

$$Median = x_{\frac{n+1}{2}}$$

1.4 Variance and Standard Deviation

$$Variance = \sigma^2$$

0

Standard deviation = σ

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - Mean)^2}{n}$$
$$\sigma^2 = \frac{\sum_{i=1}^n x_i^2}{n} - (Mean)^2$$

1.5 Moments

1.5.1 About some constant A

$$r^{th} moment = \frac{1}{n} \Sigma (x_i - A)^r$$

1.5.2 About Mean (Central Moment)

When A = Mean, then the moment is called central moment.

$$\mu_r = \frac{1}{n} \Sigma (x_i - Mean)^r$$

1.5.3 About Zero (Raw Moment)

When A = 0, then the moment is called raw moment.

$$\mu_r^{'} = \frac{1}{n} \Sigma x_i^r$$

2 Grouped Data

Data which is grouped based on the frequency at which it occurs. So if 9 appears 5 times in our observations, we group as x(observation) = 9 and f (frequency) = 5.

x (observations)	f (frequency)
2	5
1	3
4	5
8	9

If we store it in data way, i.e. the observations are of form 10-20, 20-30, $30-40 \dots$ then we will get x_i by doing

$$x_i = \frac{lower\ limit + upper\ limit}{2}$$

i.e, x_i for 20-30 will be $\frac{20+30}{2}$ So for data

	f (frequency)
0-20	2
20-40	6
40-60	1
60-80	3

the x_i 's will become.

	f_i	xi
0-20	2	10
20-40	6	30
40-60	1	50
60-80	3	70

2.1 Mean

$$\bar{x} = \frac{\Sigma f_i x_i}{\Sigma f_i}$$

2.2 Mode

The **modal class** is the record with the row with the highest f_i

$$Mode = l + (\frac{f_1 - f_0}{2f_1 - f_0 - f_2}) \times h$$

In the formula :

 $l \rightarrow$ lower limit of modal class

 $f_1 \rightarrow frequency(f_i)$ of the modal class

 $f_0 \rightarrow$ frequency of the row preceding modal class

 $f_2 \rightarrow$ frequency of the row after the modal class

 $h \rightarrow size of class interval (upper limit - lower limit)$

2.3 Median

The median for grouped data is calculated with the help of **cumulative** frequency. The cumulative frequency (cf_i) is given by:

$$cf_i = f_1 + f_2 + f_3 + \dots + f_i$$

The **median class** is the class whose cf_i is just greater than or is equal to $\frac{\Sigma f}{2}$

$$Median = l + (\frac{(n/2) - cf}{f}) \times h$$

In the formula :

 $l \rightarrow lower limit of the median class$

 $h \rightarrow size of class interval (upper limit - lower limit)$

- $n \rightarrow$ number of observations
- $\mathrm{cf} \rightarrow \mathrm{cumulative}$ frequency of the median class

 $f \rightarrow$ frequency of the median class

2.4 Variance and Standard Deviation

$$Variance = \sigma^2$$

Standard deviation = σ

$$\sigma^2 = \frac{\sum_{i=1}^n f_i (x_i - Mean)^2}{\sum f_i}$$
$$\sigma^2 = \frac{\sum_{i=1}^n f_i x_i^2}{\sum f_i} - (Mean)^2$$

2.5 Moments

2.5.1 About some constant A

$$r^{th} moment = \frac{1}{\Sigma f_i} [\Sigma f_i (x_i - A)^r]$$

2.5.2 About Mean (Central Moment)

When A = Mean, then the moment is called central moment.

$$\mu_r = \frac{1}{\Sigma f_i} [\Sigma f_i (x_i - Mean)^r]$$

2.5.3 About Zero (Raw Moment)

When A = 0, then the moment is called raw moment.

$$\mu_{r}^{'} = \frac{1}{\Sigma f_{i}} [\Sigma f_{i} x_{i}^{r}]$$

3 Relation between Mean, Median and Mode

3Median = 2Mean + Mode

4 Relation between raw and central moments

$$\mu_{0} = \mu_{0}^{'} = 1$$

$$\mu_{1} = 0$$

$$\mu_{2} = \mu_{2}^{'} - \mu_{1}^{'2}$$

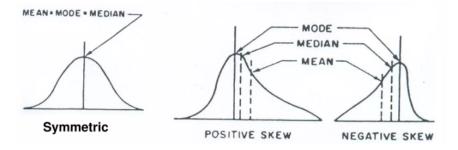
$$\mu_{3} = \mu_{3}^{'} - 3\mu_{1}^{'}\mu_{2}^{'} + 2\mu_{1}^{'3}$$

$$\mu_{4} = \mu_{4}^{'} - 4\mu_{3}^{'}\mu_{1}^{'} + 6\mu_{2}^{'}\mu_{1}^{'2} - 3\mu_{1}^{'4}$$

5 Skewness and Kurtosis

5.1 Skewness

- If Mean > Mode, then skewness is positive
- If Mean = Mode, then skewness is zero (graph is symmetric)
- If Mean < Mode, then skewness is zero



5.1.1 Pearson's coefficient of skewness

The pearson's coefficient of skewness is denoted by S_{KP}

$$S_{KP} = \frac{Mean - Mode}{Standard \ Deviation}$$

- If $S_{\rm KP}$ is zero then distribution is symmetrical
- If $S_{\rm KP}$ is positive then distribution is positively skewed
- If $S_{\rm KP}$ is negative then distribution is negatively skewed

5.1.2 Moment based coefficient of skewness

The moment based coefficient of skewness is denoted by β_1 . The μ here is central moment.

$$\beta_1 = \frac{\mu_3^2}{\mu_2^3}$$

The drawback of using β_1 as a coefficient of skewness is that it **can only tell if distribution is symmetrical or not**, when $\beta_1 = 0$. It can't tell us the direction of skewness, i.e positive or negative.

• If β_1 is zero, then distribution is symmetrical

5.1.3 Karl Pearson's γ_1

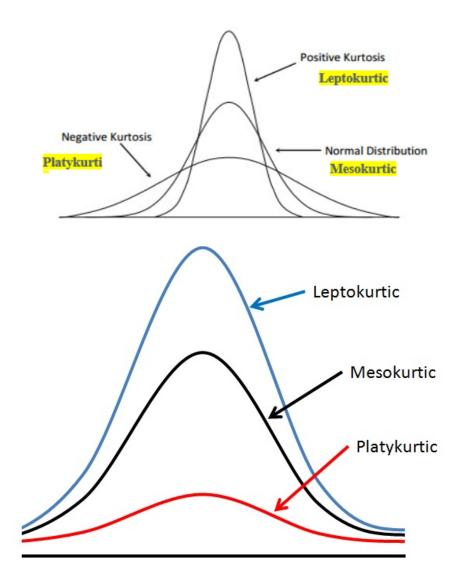
To remove the drawback of the β_1 , we can derive Karl Pearson's γ_1

$$\gamma_1 = \sqrt{\beta_1}$$
$$\gamma_1 = \frac{\mu_3}{\mu_2^{3/2}}$$

- If μ_3 is positive, the distribution has positive skewness
- If μ_3 is negative, the distribution has negative skewness
- If μ_3 is zero, the distribution is symmetrical

5.2 Kurtosis

Kurtosis is the measure of the peak and the curve and the "fatness" of the curve.



The kurtosis is calculated using β_2

$$\beta_2 = \frac{\mu_4}{\mu_2^2}$$

The value of β_2 tell's us about the type of curve

- Leptokurtic (High Peak) when $\beta_2 > 3$
- Mesokurtic (Normal Peak) when $\beta_2 = 3$

• Platykurtic (Low Peak) when $\beta_2 < 3$

5.2.1 Karl Pearson's γ_2

 γ_2 is defined as:

$$\gamma_2 = \beta_2 - 3$$

- Leptokurtic when $\gamma_2 > 0$
- Mesokurtic when $\gamma_2 = 0$
- Platykurtic when $\gamma_2 < 0$

6 Basic Probability

6.1 Conditional Probability

If some event B has already occured, then the probability of the event A is:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

 $P(A \mid B)$ is read as A given B. So we are given that B has occured and this is probability of now A occuring.

6.2 Law of Total Probability

The law of total probability is used to find probability of some event A that has been partitioned into several different places/parts.

 $P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3) + \dots + P(A|B_i)P(B_i)$

$$P(A) = \Sigma P(A|B_i)P(B_i)$$

Example, Suppose we have 2 bags with marbles

- Bag 1 : 7 red marbles and 3 green marbles
- Bag 2 : 2 red marbles and 8 green marbles

Now we select one bag at random (i.e, the probability of choosing any of the two bags is equal so 0.5). If we draw a marble, what is the probability that it is a green marble?

Sol. The green marbles are in parts in bag 1 and bag 2. Let G be the event of green marble.

Let B_1 be the event of choosing the bag 1 Let B-2 be the event of choosing the bag 2

Then, $P(G|B_1) = \frac{3}{7+3}$ and $P(G|B_2) = \frac{8}{2+8}$ Now, we can use the law of total probability to get

 $P(G) = P(G|B_1)P(B_1) + P(G|B_2)P(B_2)$

Example 2, Suppose a there are 3 forests in a park.

- Forest A occupies 50% of land and 20% plants in it are poisonous
- Forest B occupies 30% of land and 40% plants in it are poisonous
- Forest C occupies 20% of land and 70% plants in it are poisonous

What is the probability of a random plant from the park being poisonous.

Sol. Since probability is equal across whole area of the park. Event A is plant being from Forest A, Event B is plant being from Forest B and Event C is plant being from Forest C. If event P is plant being poisonous, then using law of total probability,

$$P(P) = P(P|A)P(A) + P(P|B)P(B) + P(P|C)P(C)$$

And we know P(A) = 0.5, P(B) = 0.3 and P(C) = 0.2. Also P(P|A) =0.20, P(P|B) = 0.40 and P(P|C) = 0.70

6.3 Some basic identities

• Probabilities follow law of inclusion and exclusion

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• DeMorgan's Theorem

$$P(\overline{A \cap B}) = P(\overline{A} \cup \overline{B})$$
$$P(\overline{A \cup B}) = P(\overline{A} \cap \overline{B})$$

• Some other Identity

$$P(\overline{A} \cap B) + P(A \cap B) = P(B)$$
$$P(A \cap \overline{B}) + P(A \cap B) = P(A)$$

7 Probability Function

It is a mathematical function that gives probability of occurance of different possible outcomes. We use variables to represent these possible outcomes called **random variables**. These are represented by capital letters. Example, X, Y, etc. We use these random variables as:

Suppose X is flipping two coins.

$$X = \{HH, HT, TT, TH\}$$

We can represent it as,

$$X = \{0, 1, 2, 3\}$$

Now we can write a probability function P(X = x) for flipping two coins as :

x	P(X=x)
0	0.25
1	0.25
2	0.25
3	0.25

Another example is throwing two dice and our random variable X is sum of those two dice.

_		
ſ	x	P(X=x)
Γ	2	1/36
	3	2/36
	4	3/36
	5	4/36
	6	5/36
	$\overline{7}$	6/36
	8	5/36
	9	4/36
	10	3/36
	11	2/36
	12	1/36

7.1 Types of probability functions (Continious and Discrete random variables)

Based on the range of the Random variables, probability function has two different names.

- For discrete random variables it is called Probability Distribution function.
- For continious random variables it is called Probability Density function.

8 Proability Mass Function

If we can get a function such that,

$$f(x) = P(X = x)$$

then f(x) is called a **Probability Mass Function** (PMF).

8.1 Properties of Probability Mass Function

Suppose a PMF

$$f(x) = P(X = x)$$

Then,

8.1.1 For discrete variables

$$\Sigma f(x) = 1$$
$$E(X^n) = \Sigma x^n f(x)$$

For E(X), the summation is over all possible values of x.

$$Mean = E(X) = \Sigma x f(x)$$

Variance = $E(X^2) - (E(X))^2 = \Sigma x^2 f(x) - (\Sigma x f(x))^2$

To get probabilities

$$P(a \le X \le b) = \sum_{a}^{b} f(x)$$

$$P(a < X \le b) = \left(\sum_{a}^{b} f(x)\right) - f(a)$$
$$P(a \le X < b) = \left(\sum_{a}^{b} f(x)\right) - f(b)$$

Basically, we just add all f(x) values from range of samples we need.

8.1.2 For continious variables

$$\int_{-\infty}^{\infty} f(x)dx = 1$$
$$E(X^n) = \int_{-\infty}^{\infty} x^n f(x)dx$$

We only consider integral from the possible values of **x**. Else we assume 0.

$$Mean = E(X) = \int_{-\infty}^{\infty} xf(x)dx$$
$$Variance = E(X^2) - (E(X))^2 = \int_{-\infty}^{\infty} x^2 f(x)dx - (\int_{-\infty}^{\infty} xf(x)dx)^2$$

To get probability from a to b (inclusive and exclusive doesn't matter in continious).

$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

8.2 Some properties of mean and variance

• Mean

$$E(aX) = aE(X)$$
$$E(a) = a$$

 $\left| E(X + Y) = E(X) + E(Y) \right|$

• Variance

If

$$V(X) = E(X^2) - (E(X))^2$$

Then

$$V(aX) = a^2 V(X)$$
$$V(a) = 0$$

9 Moment Generating Function

The moment generating function is given by

$$M(t) = E(e^{tX})$$

9.1 For discrete

$$M(t) = \sum_{0}^{\infty} e^{tx} f(x)$$

9.2 For continious

$$M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

9.3 Calculations of Moments (E(X)) using MGF d^n

$$E(X^n) = \left(\frac{a}{dt^n}M(t)\right)_{t=0}$$

10 Binomial Distribution

The use of a binomial distribution is to calculate a known probability repeated n number of times, i.e, doing \mathbf{n} number of trials. A binomial distribution deals with discrete random variables.

$$X = \{0, 1, 2, \dots, n\}$$

where \mathbf{n} is the number of trials.

$$P(X = x) = {}^{n}C_{x} (p)^{x}(q)^{n-x}$$

Here

 $n \rightarrow number \ of \ trials$ $x \rightarrow number \ of \ successes$ $p \rightarrow probability \ of \ success$ $q \rightarrow probability \ of \ failure$ p = 1 - q

• Mean

- Mean = np
- Variance

$$Variance = npq$$

• Moment Generating Function

$$M(t) = (q + pe^t)^n$$

10.1 Additive Property of Binomial Distribution

For an independent variable X. The binomial distribution is represented as

Here,

$$n \rightarrow number \ of \ trials$$

 $p \rightarrow probability \ of \ success$

• Property

If given,

$$X_1 \sim B(n_1, p)$$
$$X_2 \sim B(n_2, p)$$

Then,

 $X_1 + X_2 \sim B(n_1 + n_2, p)$

• NOTE

If

$$X_1 \sim B(n_1, p_1)$$
$$X_2 \sim B(n_2, p_2)$$

Then $X_1 + X_2$ is not a binomial distribution.

10.2 Using a binomial distribution

We can use binomial distribution to easily calculate probability of multiple trials, if probability of one trial is known. Example, the probability of a duplet (both dice have same number) when two dice are thrown is $\frac{6}{36}$. Suppose now we want to know the probability of a 3 duplets if a pair of dice is thrown 5 times. So in this case :

number of trials (n) = 5number of duplets we want probability for (x) = 3probability of duplet $(p) = \frac{6}{36}$ $q = 1 - p = 1 - \frac{6}{36}$

So using binomial distribution,

 $P(probability \ of \ 3 \ duplets) = P(X = 3) = \ {}^{5}C_{3}\left(\frac{6}{36}\right)^{3}\left(\frac{30}{36}\right)^{5-3}$

11 Poisson Distribution

A case of the binomial distribution where **n** is indefinitely large and **p** is very small and $\lambda = np$ is finite.

$$P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!} \text{ if } x = 0, 1, 2....$$
$$P(X = x) = 0 \text{ otherwise}$$

 $\lambda = np$

• Mean

$$Mean = \lambda$$

• Variance

 $Variance = \lambda$

• Moment Generating Function

$$M(t) = e^{\lambda(e^t - 1)}$$

11.1 Additive property

If X_1 , X_2 , $X_{3..Xn}$ follow poisson distribution with λ_1 , λ_2 , $\lambda_{3...\lambda n}$ Then,

$$X_1 + X_2 + X_3 \dots + X_n \sim \lambda_1 + \lambda_2 + \lambda_3 + \dots + \lambda_n$$

12 Exponential Distribution

A continuous random distribution which has probability mass function

$$f(x) = \lambda e^{-\lambda x}$$
, when $x \ge 0$
 $f(x) = 0$, otherwise

where
$$\lambda > 0$$

• Mean

$$Mean = \frac{1}{\lambda}$$

• Variance

$$Variance = \frac{1}{\lambda^2}$$

• Moment Generating Function

$$M(t) = \frac{\lambda}{\lambda - t}$$

12.1 Memory Less Property

$$P[X > (s+t) \mid X > t] = P(X > s)$$

13 Normal Distribution

Suppose for a probability function with random variable X, having mean μ and variance σ^2 . We denote normal distribution using $X \sim N(\mu, \sigma)$ The probability mass function is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

$$-\infty < x < \infty$$
$$-\infty < \mu < \infty$$
$$\sigma > 0$$

Here, $exp(x) = e^x$

• Moment Generating Function

$$M(t) = exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$$

13.1**Odd Moments**

$$E(X^{2n+1}) = 0$$
, $n = 0, 1, 2, ...$

13.2**Even Moments**

$$E(X^{2n}) = 1.3.5...(2n-3)(2n-1)\sigma^{2n}$$
, $n = 0, 1, 2, ...$

13.3Properties

• In a normal distribution

$$Mean = Mode = Median$$

• For normal distribution, mean deviation about mean is

$$\sigma \sqrt{\frac{2}{\pi}}$$

13.4Additive property

Suppose for distributions $X_1, X_2, X_3 \ldots X_n$ with means $\mu_1, \mu_2, \mu_3 \ldots \mu_n$ and standard deviation $\sigma_1^2, \sigma_2^2, \sigma_3^2 \ldots \sigma_n^2$ respectively. Then $X_1 + X_2 + X_3$ will have mean $(\mu_1 + \mu_2 + \mu_3 + \ldots + \mu_n)$ and standard deviation $(\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \ldots + \sigma_n^2)$

• Additive Case

Given,

$$X_1 \sim N(\mu_1, \sigma_1)$$
$$X_2 \sim N(\mu_2, \sigma_2)$$

Then,

$$aX_1 + bX_2 \sim N\left(a\mu_1 + b\mu_2, \sqrt{a^2\sigma_1^2 + b^2\sigma_2^2}\right)$$